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Motivation

• Injection of shattered pellets is a critical part of the envisaged ITER disruption mitigation system.  

• Rapid deposition of a large amount of material is expected to result in a controlled cooling of the entire 
plasma. Unlike in the case of uniform gas injection, a considerable transfer of thermal energy from plasma 
electrons to the injected ions accompanies a localised material injection, due to ambipolar parallel 
expansion of the pellet produced plasmoid. 

• The present work quantifies this energy transfer. 

• Not considered: self-consistent ablation process, plasmoid drifts
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Pellet cloud formation
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• Consider a fast* pellet which crosses a field line 

• Only a thin layer (~ mean free path) is heated and 
evaporated by the plasma heat flux 

• This evaporated over-dense cloud initially expands 
with the ion sound speed in three dimensions. 3D 
expansion stops when the cloud is ionised and its 
hydrodynamic pressure becomes lower than the 
magnetic pressure 

• Then the cloud expands along the field line

*A case of slow pellets is considered in [Arnold, A.M., Aleynikov, P., Helander, P., Self-similar 
expansion of a plasmoid supplied by pellet ablation, Accepted to PPCF (2021)]
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Expansion of a heated plasma into vacuum
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• In the simplest case of cold plasmoid ions and constantly heated electrons the expansion is governed by the 
hydrodynamic equations: 

• with a solution [1]: 
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Half of the energy transmitted to the plasmoid by the ambient plasma 
is in the kinetic energy of the plasmoid ions

[1] Aleynikov, P.,  Breizman,  B.,  Helander,  P., Turkin,  Y. 2019 Plasma  ion  heating  by cryogenic pellet injection, Journal of 
Plasma Physics, 85, 905850105. 

Self-similar solution
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Attenuation of the ambient plasma
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• The cold plasmoid opacity is different for the 
ambient hot plasma electrons and ions. 

• Because  the  stopping  power  of  the  hot  ions  on  
cold  electrons  is  very  high,  the  cold plasmoid is 
not transparent for the ambient ions before it is 
heated. 

• Modelling shows that plasmoid pressure quickly 
becomes higher than the ambient (in under 1 µs). 
As plasmoid expands, its pressure starts to decrease 
and becomes comparable to the ambient pressure. 

• The plasmoid becomes transparent to the ambient 
ions when it reaches 100eV (within a few µs).
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More complete model for early stage
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• In order to capture the early stage of expansion accurately we developed a fluid + kinetic Lagrangian code 
[A. Runov, P. Aleynikov, A. M. Arnold, B. N. Breizman, and P. Helander, 2021 Modelling of parallel 
dynamics of a pellet produced plasmoid, Accepted to JPP] 

• In the model the plasmoid is treated with the Braginskii equations (two temperatures) 
• Slowing down of the incident ambient particles within the plasmoid is treated with a kinetic equation  

 

where  is the slowing-down frequency (Eq. (18.5) from [Trubnikov 1965]). 
• Kinetic momentum and energy sources in Braginskii equations are:
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Compare complete and simplified models
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• Initially, when the plasmoid is not transparent to the ions, the total momentum 
source is approximately equal to the ambient ion hydrodynamic pressure.  

• As the plasmoid is heated, the ion mean free path increases and the friction 
forces from the left and the right ambient fluxes cancel each other. 

• At later stages of expansion the solutions of complete and simplified modes 
agree very well. Detailed study is in [Runov et al. 2021]
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Ionization balance in a heated plasmoid
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• Gradual heating of a cold and dense plasmoid 
ensures that ionization distribution follows closely 
the collisional radiative equilibrium distribution 
[ADAS]. 

• We solve a set of time-dependent ionization-
recombination rate equations assuming temperature 
and density dependence given by the self-similar 
equations:  and  (radiation is 
ignored). 

• Despite a quick temperature increase (2 keV by 100 
µs) the mean charge state of the time-dependent 
solution follows closely the equilibrium charge 
state. The total radiated energy (integral over 100 
µs) of the time-dependent solution is only 5% 
higher than the equilibrium case.

n ∼ Nlt− 3
2 T = τt

Average charge state and the corresponding volumetric radiation 
power  in a case of a Neon plasmoid ( ) in an ambient 
plasma with temperature 10 keV and density .

Nl = 1022m−2

na = 1020m−3

– rate equations  
--equilibrium 
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Radiation losses
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• In plasma with high-Z impurities radiation is dominated 
by lines. 

• The mean free path of a resonant photon in the line 
radiation process can be significantly shorter than the 
width of the plasmoid (~10 cm). 

• Upper estimate: spectral radiance of any radiation 
cannot exceed that of a black body. We cut every line at 
Planck’s law level, assuming Doppler broadening 
mechanism.  

• The resulting radiation losses are reduced significantly 
for T < 100 eV. 

• NB. Collisional radiative model is not applicable for 
high densities (lines trapping is not accounted for).

Model spectrum intensity (from a unit surface) of a 10 cm slab 
of Argon plasma with   at 15 eV (top). Radiated 

power loss of a corresponding plasma layer (bottom).
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Prad ≈ ∫ min (∑
l

nkl
i neεl

hc
λ

Pl(λ)rp, B(λ)) dλ



Pavel Aleynikov, IAEA-PPPL Workshop on Theory and Simulation of Disruptions, July 19-23, 2021

Governing equations
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• Expansion of a heated plasmoid is governed by the following system of hydrodynamic equations 

• which admits a self-similar Ansatz ,   for  . 

•  is given by the collisional energy exchange between Maxwellian populations (ambient and plasmoid) 

• The flux surface temperature evolution is approximated using  
where A is the field line length. We assume full coverage of the flux surface by the expanding plasmoid. Cases 
of short connection length on rational magnetic surfaces are ignored.
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Expansion of a deuterium plasmoid
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• We first consider deuterium plasmoid in  keV, 
, a n d m 

which corresponds to 2x of the pre-pellet density on a 
flux surface with  m,  m. 

• This calculation is stopped when plasmoid covers the 
entire flux surface, by which time 0.85 implying 
that the majority of the pre-pellet electron thermal 
energy has been transferred to the ions. The 
corresponding electron temperature is  
eV. Note that assuming a uniform injection the 
electron and ion temperatures after dilution would be 
3333 eV. 

• Radiation is negligible.

Ta = 10
na = 1020m−3 Nl = 1.5 ⋅ 1023m−2 rp = 0.3

R = 6 ra = 1

Wi =

T = Ta = 480

Evolution of plasmoid ( ) and ambient electron temperatures ( ), 
plasmoid length ( ), normalized plasmoid thermal energy ( ), 

normalized ambient electron thermal energy ( ) and the 
normalized ion kinetic energy ( ). 
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Deuterium energy conversion fraction
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• The region where plasmoid is not transparent for the ambient electrons (attenuation ) is marked with the 
red curve, close to this region our model is not valid. A hydrodynamic description of both the plasmoid and 
the ambient plasma is appropriate for  .

s > 1

s ≫ 1

Ultimate ion energy  (left) and electron temperature   (right) as a 
function of pre-pellet temperature and the amount of assimilated deuterium.
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Expansion of a neon plasmoid 
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• Temperature stays at 20 eV initially as the strong 
line emission radiates the incoming energy (despite 
the plasmoid is not transparent for lines).  

• After expanding to about 10 m, the radiation losses 
decrease (due to density decrease ) so 
heating and expansion accelerate. Ultimately the 
ions gain over 50% of the pre-pellet electron 
thermal energy.

≈

∼ t−3/2

Evolution of a neon plasmoid with  in an 
ambient plasma of  10 keV and . 

Nl = 1022m−2

1020m−3
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Neon energy conversion fraction
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Ultimate ion energy as a function of pre-pellet temperature and the amount of assimilated neon atoms. 
Red contours indicate ambient ions thermalization time in a post pellet plasma in ms.

• The ambipolar energy transfer accounts for 
up to 60% of the electron thermal energy.  

• The remainder is radiated in the beginning.  

• Ion-electron thermalization time in a post 
pellet plasma is short (due to low Te). Ions 
contribute to TQ dynamics.

Assimilated quantity 
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Summary
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• Significant transfer of pre-quench electron thermal energy to the injected ions is expected for the disruption 
mitigation pellets. 

• The remainder of the energy is radiated by a dense plasmoid during expansion, in spite of the line emission 
trapping. 

• The ion energy and the energy transferred to the injected ions are expected to be radiated on a longer 
timescale after homogenization.


